Hanoi University of Science and Technology School of Applied Mathematics and Informatics

Exercises: Calculus 2 Course ID: MI 1026

Chapter 1. Vectors and the geometry of space

Exercise 1. Determine whether the given vectors are orthogonal, parallel, or neither

(a)
$$\vec{a} = (-5; 3; 7), \vec{b} = (6; -8; 2).$$

(c)
$$\vec{a} = -\vec{i} + 2\vec{j} + 5\vec{k}, b = 3\vec{i} + 4\vec{j} - \vec{k}.$$

(b)
$$\vec{a} = (4; 6), \vec{b} = (-3; 2).$$

(d)
$$\vec{u} = (a, b, c), \vec{v} = (-b, a, 0).$$

Exercise 2. For what values of b are the vectors (-6; b; 2) and (b; 2b; b) orthogonal?

Exercise 3. Find two unit vectors that make an angle of 30^0 with v = (3, 4).

Exercise 4. Find the angle between a diagonal of a cube and one of its edges.

Exercise 5. Find an unit vector that parallel with $8\vec{i} - \vec{j} + 4\vec{k}$.

Exercise 6. Find area of triangle ABC, where A(2;8;12), B(4;5;8), C(1;4;10).

Exercise 7. Find the altitude AH of triangle ABC, where A(1;6;4), B(2;5;8) and C(-1;4;0).

Exercise 8. Prove that $\vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \cdot \vec{y} - (\vec{x} \cdot \vec{y}) \cdot \vec{z}$.

Exercise 9. Find the distance from the point (3; 7; -5) to

(a)
$$xy$$
-plane

(c)
$$zx$$
-plane

(e)
$$y$$
-axis

(b)
$$yz$$
-plane

(d)
$$x$$
-axis

(f)
$$z$$
-axis

Exercise 10. Evaluate $\vec{a} + \vec{b}$, $2\vec{a} + 3\vec{b}$, $|\vec{a}|$ and $|\vec{a} - \vec{b}|$.

(a)
$$\vec{a} = 4\vec{i} + \vec{j} \text{ and } \vec{b} = \vec{i} - 2\vec{j}$$
.

(b)
$$\vec{a} = \vec{i} + 2\vec{j} - 3\vec{k}$$
 and $\vec{b} = -2\vec{i} - \vec{j} + 5\vec{k}$.

Exercise 11. Find the angle between

(a)
$$\vec{a} = (3; 4)$$
 and $\vec{b} = (5; 12)$.

(b)
$$\vec{a} = (6; -3; 2)$$
 and $\vec{b} = (2; 1; -2)$.

Exercise 12. Find a unit vector that is orthogonal to both $\vec{i} + \vec{j}$ and $\vec{i} + \vec{k}$.

Exercise 13. Find the angle between a diagonal of a cube and a diagonal of one of its faces.

Exercise 14. Prove that $|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2|\vec{a}|^2 + 2|\vec{b}|^2$.

Exercise 15. Find the volume of the parallelepiped determined by the vectors

(a)
$$\vec{a} = (6; -3; -1), \vec{b} = (0; 1; 2) \text{ and } \vec{c} = (4; -2; 5).$$

(b)
$$\vec{a} = \vec{i} + \vec{j} - \vec{k}$$
, $\vec{b} = \vec{i} - \vec{j} + \vec{k}$ and $\vec{c} = -\vec{i} + \vec{j} + \vec{k}$.

Exercise 16. (a) Let P be a point not on the line that passes through the points Q, R and S. Show that the distance d from the point P to the plane (QRS) is

$$d = \frac{|\vec{a} \cdot (\vec{b} \times \vec{c})|}{|\vec{a} \times \vec{b}|},$$

where $\vec{a} = \overrightarrow{QR}$, $\vec{b} = \overrightarrow{QS}$ and $\vec{c} = \overrightarrow{QP}$.

(b) Use the formula in part (a) to find the distance from the point P(2;1;4) to the plane through the points Q(1;0;0), R(0;2;0) and S(0;0;3).

Exercise 17. Find an equation of the sphere with center (1; -4; 3) and radius 5. Describe its intersection with each of the coordinate planes.

Exercise 18. Find an equation of the sphere that passes through the origin and whose center is (1, 2, 3).

Exercise 19. Find an equation of a sphere if one of its diameters has end points (2; 1; 4) and (4; 3; 10).

Exercise 20. Find an equation of the largest sphere with center (5; 4; 9) that is contained in the first octant.

Exercise 21. Consider the points P such that the distance from P to A(-1;5;3) is twice the distance from P to B(6;2;-2). Show that the set of all such points is a sphere, and find its center and radius.

Exercise 22. Find an equation of the set of all points equidistant from the points A(-1;5;3) and B(6;2;-2). Describe the set.

Exercise 23. Sketch and classify the quadric surface

(a)
$$x^2 + 2z^2 - 6x - y + 10 = 0$$
. (c) $x^2 = y^2 + 4z^2$.

(c)
$$x^2 = y^2 + 4z^2$$
.

(e)
$$y = z^2 - x^2$$
.

(b)
$$x = y^2 + 4z^2$$
.

(d)
$$-x^2 + 4y^2 - z^2 = 4$$
.

(f)
$$4x^2 - 16y^2 + z^2 = 16$$
.

Exercise 24. Find an equation for the surface obtained by rotating

(a) the parabol $y = x^2$ about the y-axis.

(b) the line x = 3y about the x-axis.

Exercise 25. Find an equation for the surface consisting of all points that are equidistant from the point (-1;0;0) and the plane x=1. Identify the surface.

Exercise 26. Find an equation for the surface consisting of all points P for which the distance from P to the x-axis is twice the distance from P to the yz-plane. Identify the surface.

Exercise 27. Change from rectangular to cylindrical coordinates.

(a)
$$(-1;1;1)$$
.

(c)
$$(2\sqrt{3}; 2; -1)$$
.

(b)
$$(-2; 2\sqrt{3}; 3)$$
.

(d)
$$(4; -3; 2)$$
.

Exercise 28. Write the equations in cylindrical coordinates.

(a)
$$x^2 - x + y^2 + z^2 = 1$$
.

(c)
$$3x + 2y + z = 6$$
.

(b)
$$z = x^2 - y^2$$
.

(d)
$$-x^2 - y^2 + z^2 = 1$$
.

Exercise 29. Identify the surface whose equation is given

(a)
$$z = 4 - r^2$$
.

(b)
$$2r^2 + z^2 = 1$$
.

Exercise 30. Change from rectangular to spherical coordinates

(a)
$$(0; -2; 0)$$
.

(c)
$$(1;0;\sqrt{3})$$
.

(b)
$$(-1; 1; -\sqrt{2}).$$

(d)
$$(\sqrt{3}; -1; 2\sqrt{3}).$$

Exercise 31. Identify the surface whose equation is given.

(a)
$$r = \sin \theta \sin \varphi$$
.

(b)
$$r^2(\sin^2\varphi\sin^2\theta + \cos^2\varphi) = 9$$
.

Exercise 32. Write the equation in spherical coordinates

(a)
$$z^2 = x^2 + y^2$$
.

(c)
$$x^2 - 2x + y^2 + z^2 = 0$$
.

(b)
$$x^2 + z^2 = 9$$
.

(d)
$$x + 2y + 3z = 1$$
.

Chapter 2. Vector Functions

Exercise 33. Find the parametric equations for the intersection of the circular cylinder $x^2 + y^2 = 4$ and parabolic cylinder $z = x^3$.

Exercise 34. Find the domain.

(a)
$$\vec{r}(t) = (\sqrt{4 - t^2}, e^{-3t}, \ln(1 + t)).$$

(c)
$$\vec{r}(t) = \arcsin \frac{2t}{1+t} \vec{i} + \frac{\sqrt{t}}{\sin \pi t} \vec{k}$$
.

(b)
$$\vec{r}(t) = \frac{t-2}{t+2}\vec{i} + \sin t \vec{j} + \ln(9-t^2)\vec{k}$$
.

(d)
$$\vec{r}(t) = (\sqrt{\cosh t - 1}, \sqrt{t^4 - 5t^2 + 4}, 0).$$

Exercise 35. Find the limit

(a)
$$\lim_{t\to 0} \left(\frac{e^t - 1}{t}, \frac{\sqrt{t+1} - 1}{t}, \frac{3}{t+1} \right)$$
.

(b)
$$\lim_{t \to +\infty} \left(\arctan t, e^{-2t}, \frac{\ln t}{t+1} \right)$$
.

Exercise 36. Find a vector function that represents the curve of intersection of the two surfaces.

- (a) The cylinder $x^2 + y^2 = 4$ and the surface z = xy.
- (b) The paraboloid $z = 4x^2 + y^2$ and the parabolic cylinder $y = x^2$.

Exercise 37. Suppose u and v are vector functions that possess limits as $t \to a$ and let c be a constant. Prove the following properties of limits.

(a)
$$\lim_{t \to a} [\vec{u}(t) + \vec{v}(t)] = \lim_{t \to a} \vec{u}(t) + \lim_{t \to a} \vec{v}(t)$$
.

(c)
$$\lim_{t \to a} [\vec{u}(t) \cdot \vec{v}(t)] = \lim_{t \to a} \vec{u}(t) \cdot \lim_{t \to a} \vec{v}(t)$$
.

(b)
$$\lim_{t \to a} c\vec{v}(t) = c \lim_{t \to a} \vec{v}(t)$$
.

(d)
$$\lim_{t \to a} [\vec{u}(t) \times \vec{v}(t)] = \lim_{t \to a} \vec{u}(t) \times \lim_{t \to a} \vec{v}(t)$$
.

Exercise 38. Find the derivative of the vector function.

(a)
$$\vec{r}(t) = (t \sin t, t^3, t \cos 2t)$$
.

(c)
$$\vec{r}(t) = e^{t^2} \vec{i} - \sin^2 t \vec{j} + \ln(1+3t) \vec{k}$$
.

(b)
$$\vec{r}(t) = \arcsin t \, \vec{i} + \sqrt{1 - t^2} \, \vec{j} + \vec{k}$$
.

(d)
$$\vec{r}(t) = (e^{\sin t}, \arctan t, t^2).$$

Exercise 39. Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.

(a)
$$\begin{cases} x = t, \\ y = e^{-t}, \\ z = 2t - t^2, \end{cases}$$
 at $(0; 1; 0)$.

(b)
$$\begin{cases} x = t \cos t, \\ y = t, & \text{at } (-\pi; \pi; 0). \\ z = t \sin t, \end{cases}$$

Exercise 40. Find the point of intersection of the tangent lines to the curve $\vec{r}(t) = (\sin \pi t; 2 \sin \pi t; \cos \pi t)$ at the points where t = 0 and t = 0.5.

Exercise 41. Evaluate the integral.

(a)
$$\int_0^{\pi/2} (3\sin^2 t \cos t \, \vec{i} + 3\sin t \cos^2 t \, \vec{j} + 2\sin t \cos t \, \vec{k}) dt$$
.

(b)
$$\int_{1}^{2} (t^2 \vec{i} + t\sqrt{t-1} \vec{j} + t \sin \pi t \vec{k}) dt$$
.

(c)
$$\int_{1}^{2} (e^{t} \vec{i} + 2t \vec{j} + \ln t \vec{k}) dt$$
.

(d)
$$\int_0^{1/4} (\cos \pi t \, \vec{i} + \sin \pi t \, \vec{j} + t^2 \, \vec{k}) dt$$
.

Exercise 42. If a curve has the property that the position vector $\vec{r}(t)$ is always perpendicular to the tangent vector $\frac{d}{dt}\vec{r}(t)$, show that the curve lies on a sphere with center the origin.

Exercise 43. Find the length of the curve.

(a)
$$\vec{r}(t) = (2\sin t, 5t, 2\cos t); -10 \le t \le 10.$$

(c)
$$\vec{r}(t) = (\cos t, \sin t, \ln \cos t); 0 \le t \le \pi/4.$$

(b)
$$\vec{r}(t) = (2t, t^2, \frac{1}{3}t^3); 0 \le t \le 1.$$

(d)
$$\vec{r}(t) = (\sin t - t \cos t, \cos t + t \sin t, t^2); 0 \le t \le 2\pi.$$

Exercise 44. Let C be the curve of intersection of the parabolic cylinder $x^2 = 2y$ and the surface 3z = xy. Find the length of C from the origin to the point (6; 18; 36).

Exercise 45. Suppose you start at the point (0;0;3) and move 5 units along the curve $x=3\sin t;y=4t;z=3\cos t$ in the positive direction. Where are you now?

Exercise 46. Find the curvature of $\vec{r}(t) = (e^t \cos t, e^t \sin t, t)$ at the point (1; 0; 0).

Exercise 47. Find the curvature of $\vec{r}(t) = (t, t^2, t^3)$ at the point (1; 1; 1).

Exercise 48. Find the curvature of $y = \sqrt{x^2 + 1} - 2$ at the point A(0; -1).

Exercise 49. Find the curvature of the curve given by $\begin{cases} x^2 + y^2 + 1 = 2(x - y), \\ x + y - z = 2 \end{cases}$ at the point A(1; 0; -1).

Exercise 50. Find the curvature.

(a)
$$\vec{r}(t) = t \vec{i} + t \vec{j} + (1 + t^2) \vec{k}$$
.

(c)
$$x = e^t \cos t, y = e^t \sin t$$
.

(b)
$$\vec{r}(t) = 3t \vec{i} + 4 \sin t \vec{j} + 4 \cos t \vec{k}$$
.

(d)
$$x = t^3 + 1, y = t^2 + 1.$$

Exercise 51. Find the curvature.

(a)
$$y = 2x - x^2$$
.

(c)
$$y = 4x^{5/2}$$
.

(b)
$$y = \cos x$$
.

(d)
$$y = \sin x$$
.

Exercise 52. At what point does the curve have maximum curvature? What happens to the curvature as $x \to \infty$.

(a)
$$y = \ln x$$
.

(b)
$$y = e^x$$
.

Exercise 53. Find an equation of a parabola that has curvature 4 at the origin.

Exercise 54. Find the velocity vector, acceleration vector, and speed of a moving particle with the given position function

(a)
$$\vec{r}(t) = (e^{-t}, t\sqrt{3}, e^t).$$

(b)
$$\vec{r}(t) = e^t(\sin t, t, \cos t)$$
.

Exercise 55. A moving particle starts at an initial position $\vec{r}(0) = (2; -3; 4)$ with initial velocity $\vec{v}(0) = (1; 5; -4)$. Find its velocity and position at time t if $\vec{a}(t) = (2, t^3, e^{3t})$. Find its speed at t = 1.

Chapter 3. Double Integrals

Exercise 56. Find the volume of the solid that lies under the plane 4x + 6y - 2z + 15 = 0 and above the rectangle $R = \{(x, y) : -1 \le x \le 2, -1 \le y \le 1\}$.

Exercise 57. Find the volume of the solid enclosed by the surface $z = 1 + e^x \sin y$ and the planes $x = \pm 1$, $y = 0, y = \pi$ and z = 0.

Exercise 58. Find the volume of the solid in the first octant bounded by the cylinder $z = 16 - x^2$ and the plane y = 5.

Exercise 59. Find the volume of the solid enclosed by the paraboloid $z = 2 + x^2 + (y - 2)^2$ and the planes z = 1, x = 1, x = -1, y = 0, and y = 4.

Exercise 60. Evaluate the following integrals

- (a) $\int_{1}^{3} dx \int_{1}^{5} \frac{\ln y}{xy} dx$.
- (b) $\int_0^1 dx \int_0^1 xy \sqrt{x^2 + y^2} dy$.
- (c) $\iint_R \frac{1}{1+x+y} dx dy$, where $R = [1; 3] \times [1; 2]$.
- (d) $\iint_D y e^{xy} dx dy$, where $D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 2; 0 \le y \le 3\}$.
- (e) $\iint_D |x+y| dxdy$, where $D = \{(x,y) \in \mathbb{R}^2 : |x| \le 1; |y| \le 1\}$.
- (f) $\iint_D \sqrt{|y-x^2|} dx dy$, where $D = \{(x,y) \in \mathbb{R}^2 : |x| \le 1, 0 \le y \le 2\}$.
- (g) $\iint_D |y x^2|^3 dx dy$, where $D = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, \text{ and } 0 \le y \le 2\}.$

Exercise 61. Use Midpoint rule to estimate the volume of the solid that lies below the surface z = xy and above the rectangle $R = \{(x, y) : 0 \le x \le 6, 0 \le y \le 4\}$. Use a Riemann sum with m = 3, n = 2.

Exercise 62.

- (a) Estimate the volume of the solid that lies below the surface $z = 1 + x^2 + 3y$ and above the rectangle $R = [1; 2] \times [0; 3]$. Use a Riemann sum with m = n = 2 and choose the sample points to be lower left corners.
- (b) Use the Midpoint Rule to estimate the volume in part (1).

Exercise 63. A table of values is given for a function f(x,y) defined on $R = [0;4] \times [2;4]$.

- (a) Estimate $\iint_R f(x,y) dx dy$ using Midpoint rule with m=n=2.
- (b) Estimate the double integral with m = n = 4 by choosing the sample points to be the points closest to the origin.

x	2.0	2.5	3.0	3.5	4.0
0	-3	-5	-6	-4	-1
1	-1	-2	-3	-1	1
2	1	0	-1	1	4
3	2	2	1	3	7
4	3	4	2	5	9

Exercise 64. Change the order of the following integration.

(a)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y)dy$$
.

(d)
$$\int_{0}^{\frac{\pi}{2}} dy \int_{\sin y}^{1+y^2} f(x,y) dx$$
.

(b)
$$\int_{0}^{1} dy \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y) dx$$
.

(e)
$$\int_{0}^{\sqrt{2}} dy \int_{0}^{y} f(x,y) dx + \int_{\sqrt{2}}^{2} dy \int_{0}^{\sqrt{4-y^2}} f(x,y) dx$$
.

(c)
$$\int_{0}^{2} dx \int_{\sqrt{2x-x^2}}^{\sqrt{2x}} f(x,y) dy$$
.

Exercise 65. Evaluate the integrals

(a)
$$\int_{0}^{1} dx \int_{0}^{1-x^2} \frac{xe^{3y}}{1-y} dy$$
.

(b)
$$\iint_D x^2(y-x)dxdy$$
, where D is bounded by $y=x^2$ and $x=y^2$.

(c)
$$\iint_D \frac{y}{1+x^2} dx dy$$
, where D is bounded by $y = \sqrt{x}, y = 0$ and $x = 1$.

(d)
$$\iint_D xy dx dy$$
, where D is bounded by $x = y^2, x = -1, y = 0$ and $y = 1$.

(e)
$$\iint_D (x+y) dx dy$$
, where D is bounded by $x^2 + y^2 \le 1, \sqrt{x} + \sqrt{y} \ge 1$.

(f)
$$\iint_D (x^2 + y^2)^{3/2} dx dy$$
, where D is a region in the first quadrant and bounded by $y = 0$, $y = \sqrt{3}x$ and circle $x^2 + y^2 = 9$.

(g)
$$\iint_D (|x| + |y|) dx dy$$
, $D = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$.

Exercise 66. Change to polar coordinates in a double integral $\iint_D f(x,y)dxdy$, where D is a region as follows:

(a)
$$a^2 \le x^2 + y^2 \le b^2$$
.

(c)
$$x^2 + y^2 \le 2x, x^2 + y^2 \le 2y$$
.

(b)
$$x^2 + y^2 \ge 4x, x^2 + y^2 \le 8x, y \ge x, y \le \sqrt{3}x.$$

Exercise 67. Use polar coordinates to find the following integrals

(a)
$$\int_{0}^{R} dx \int_{0}^{\sqrt{R^2 - x^2}} \ln(1 + x^2 + y^2) dy$$
, $(R > 0)$.

- (b) $\iint_D xy dx dy$, where D is a disk $(x-2)^2 + y^2 \le 1, y \ge 0$.
- (c) $\iint_D (\sin y + 3x) dx dy$, where D is a disk $(x-2)^2 + y^2 \le 1$.
- (d) $\iint_D |x+y| dxdy$, where D is a disk $x^2 + y^2 \le 1$.

Exercise 68. Evaluate the following integrals:

(a)
$$\iint_D \frac{2xy+1}{\sqrt{1+x^2+y^2}} dxdy$$
, with $D: x^2+y^2 \le 1$.
(b) $\iint_D \frac{dxdy}{(x^2+y^2)^2}$, with $D: \begin{cases} y \le x^2+y^2 \le 2y \\ x \le y \le \sqrt{3}x. \end{cases}$

Exercise 69. Find the mass and center of mass of the lamina that occupies the region D and has the given density function f(x, y).

(a)
$$D = \{(x, y) : 1 \le x \le 3, 1 \le y \le 4\}, f(x, y) = 2y^2.$$

(b)
$$D = \{(x,y) : 0 \le x \le a, 0 \le y \le b\}, f(x,y) = 1 + x^2 + y^2.$$

(c) D is bounded by
$$y = 1 - x^2$$
 and $y = 0$; $f(x, y) = ky$.

(d)
$$D$$
 is bounded by $y = x^2$ and $y = x + 2$; $f(x, y) = kx$.

(e)
$$D = \{(x,y) : 0 \le y \le \sin \frac{\pi x}{L}, 0 \le x \le L\}; f(x,y) = y.$$

(f) D is bounded by the parabolas $y = x^2$, and $x = y^2$; $f(x, y) = \sqrt{x}$.

Exercise 70. Find the area of the surface.

- (a) The part of the plane z = 2 + 3x + 4y that lies above the rectangle $[0; 5] \times [1; 4]$.
- (b) The part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$.
- (c) The part of the paraboloid $z = 4 x^2 y^2$ that lies above xy-plane.
- (d) The part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$.

Exercise 71. Use the change of variables u = x + y and v = x - y to evaluate the integral

$$\int_{0}^{1} dx \int_{-x}^{x} (2 - x - y)^{2} dy.$$

Exercise 72. Evaluate the following integrals:

(a)
$$\iint_D \frac{xy}{x^2 + y^2} dx dy$$
, where $D: \begin{cases} 2x \le x^2 + y^2 \le 12 \\ x^2 + y^2 \ge 2\sqrt{3}y \\ x \ge 0, y \ge 0. \end{cases}$

(b)
$$\iint_D |9x^2 - 4y^2| dx dy$$
, where $D : \frac{x^2}{4} + \frac{y^2}{9} \le 1$.

Chapter 4. Triple Integrals

Exercise 73. Express the triple integral $\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x,y,z) dz dy dx$ in the order dx dy dz.

Exercise 74. Evaluate the iterated integral

(a)
$$\int_{0}^{1} \int_{x}^{2x} \int_{0}^{y} 2xyz \, dz dy dx,$$

(c)
$$\int_{0}^{1} \int_{0}^{z} \int_{0}^{y} ze^{-y^{2}} dx dy dz$$
,

(b)
$$\int_{0}^{3} \int_{0}^{1} \int_{0}^{\sqrt{1-z^2}} ze^y dx dz dy$$
,

(d)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{y} \int_{0}^{x} \cos(x+y+z)dzdxdy.$$

Exercise 75. Evaluate the triple integral

- (a) $\iiint_E y dx dy dz$, where E is bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
- (b) $\iiint_E x^2 e^y dx dy dz$, where E is bounded by the parabolic cylinder $z = 1 y^2$ and the planes z = 0, x = 1, x = -1.
- (c) $\iiint_E xy dx dy dz$, where E is bounded by the parabolic cylinder $y = x^2$, $x = y^2$ and the planes z = 0, z = x + y.
- (d) $\iiint_E x dx dy dz$, where E is the bounded by the paraboloid $x = 4y^2 + 4z^2$ and the plane x = 4.
- (e) $\iiint_E (x^3 + xy^2) dx dy dz$, where E is the solid in the first octant that lies beneath the paraboloid $z = 1 x^2 y^2$.

Exercise 76. Find the volume of the region E bounded by the paraboloids $z = x^2 + y^2$ and $z = 36 - 3x^2 - 3y^2$.

Exercise 77. Find the volume of the solid that lies within both the cylinder $x^2 + y^2 = 1$ and the sphere $x^2 + y^2 + z^2 = 4$.

Exercise 78. Find the center of mass and the moments of inertia of the cubic $[1;2] \times [1;2] \times [1;2]$ if the density is $\rho(x,y,z) = x^2 + y^2 + z^2$.

Exercise 79. Find the center of mass and the moments of inertia of the tetrahedron with vertices (0;0;0); (1;0;0); (0;1;0) and (0;0;1) if the density is C (constant $\neq 0$).

Exercise 80. Evaluate the integrals by changing to cylindrical coordinates.

(a)
$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xzdzdxdy$$
,

(b)
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} dz dy dx.$$

Exercise 81. Evaluate the triple integrals.

- (a) $\iiint_B x \, dx \, dy \, dz$, where B is bounded by the cone $x = \sqrt{y^2 + z^2}$, and the plane x = 1.
- (b) $\iiint\limits_{B} \sqrt{x^2 + 4z^2} \, dx \, dy \, dz$, where B is bounded by the cone $x^2 + 4z^2 = y^2$, and the plane y = -1.

Exercise 82. Evaluate the triple integrals.

- (a) $\iiint\limits_A \sqrt{x^2 + 4y^2 + z^2} \, dx dy dz$, where A is given by $x^2 + 4y^2 + z^2 \le 2x$.
- (b) $\iiint_A x^2 dx dy dz$, where A is bounded by the xz-plane and the hemispheres $y = \sqrt{9 x^2 z^2}$ and $y = \sqrt{16 x^2 z^2}$.

Exercise 83. Find the moments of inertia of the ball $B = \{x^2 + y^2 + z^2 \le 1\}$ if the density $\rho(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.

Exercise 84. Evaluate the integral by changing to spherical coordinates $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{\sqrt{2-x^2-y^2}} xydzdydx$.

Exercise 85. Let *E* be the solid given by $x \le x^2 + y^2 + z^2 \le 2x$, $y \le x^2 + y^2 + z^2 \le 2y$, and $z \le x^2 + y^2 + z^2 \le 2z$.

(a) Evaluate the Jacobian of doing change the variables:

$$u = \frac{x}{x^2 + y^2 + z^2}, \quad v = \frac{y}{x^2 + y^2 + z^2}, \quad w = \frac{z}{x^2 + y^2 + z^2}.$$

(b) Evaluate the triple integral $\iiint_E \frac{1}{(x^2+y^2+z^2)^2} dx dy dz.$

Exercise 86. Let E be the solid given by $|x-y|+|x+3y|+|x+y+z| \le 1$. Evaluate the triple integral $\iiint_E xy dx dy dz$.

Chapter 5. Line Integrals

Exercise 87. Evaluate the following line integrals:

- (a) $\int_C xyds$, where $C: x = t^2, y = 2t, 0 \le t \le 1$.
- (b) $\int_C xy^4 ds$, where $C: x^2 + y^2 = 9, x \ge 0$.

- (c) $\int_C (x^2y^3 \sqrt{x})dy$, where C is the arc of the curve $y = \sqrt{x}$ from (1;1) to (4;2).
- (d) $\int_C x^2 dx + y^2 dy$, where C consists of circle $x^2 + y^2 = 4$ from (2;0) to (0;2) and the segment from (0;2) to (4;3).
- (e) $\int_C (3x y) ds$, where C is the half of circle $y = \sqrt{9 x^2}$.
- (f) $\int_C (x-y)ds$, where C is a circle $x^2 + y^2 = 2x$.
- (g) $\int_C y^2 ds$, where C is given by $x = a(t \sin t), y = a(1 \cos t)$ with $0 \le t \le 2\pi, a > 0$.
- (h) $\int_C \sqrt{x^2 + y^2} ds$, where C is a curve $x = a(\cos t + t \sin t)$, $y = a(\sin t t \cos t)$, with $0 \le t \le 2\pi$, a > 0.

Exercise 88. Evaluate the following line integrals:

- (a) $\int_C (x^2 + y^2 + z^2) ds$, where $C: x = t, y = \cos 2t, z = \sin 2t, 0 \le t \le 2\pi$.
- (b) $\int_C xe^{yz}ds$, where C is the segment from (0;0;0) to (1;2;3).
- (c) $\int_C y dx + z dy + x dz$, where $C: x = \sqrt{t}, y = t, z = t^2, 1 \le t \le 4$.
- (d) $\int_C (y+z)dx + (x+z)dy + (x+y)dz$, where C consists of two line segments from (0;0;0) to (1;0;1), and from (1;0;1) to (0;1;2).

Exercise 89. Evaluate the following line integrals

- (a) $\int_{AB} (x^2 2xy)dx + (2xy y^2)dy$, where AB is a part of parabol $y = x^2$ from A(1;1) to B(2;4).
- (b) $\int_C (2x-y)dx + xdy$, where C is a curve $\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}$ whose direction is increasing direction of the parameter t, $(0 \le t \le 2\pi, a > 0)$.
- (c) $\int_{ABCA} 2(x^2+y^2)dx + x(4y+3)dy$, where ABCA is a broken line through the points A(0;0), B(1;1), C(0;2).
- (d) $\int_{ABCDA} \frac{dx + dy}{|x| + |y|}$, where ABCDA is a broken line through the points A(1;0), B(0;1), C(-1;0), D(0;-1).
- (e) $\int\limits_C \frac{\sqrt[4]{x^2+y^2}dx}{2} + dy$, where C is curve $\begin{cases} x = t \sin \sqrt{t} \\ y = t \cos \sqrt{t}, (0 \le t \le \frac{\pi^2}{4}). \end{cases}$

Exercise 90. Evaluate the following line integral

$$\int_C (xy + x + y)dx + (xy + x - y)dy$$

in two ways: by computing it directly, and by Green's formula, then compare the results, where C is a curve:

(a)
$$x^2 + y^2 = 2x$$

(b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (a, b > 0)$$

Exercise 91. Evaluate the following line integrals:

(a)
$$\oint_{x^2+y^2=2x} x^2 \left(y + \frac{x}{4}\right) dy - y^2 \left(x + \frac{y}{4}\right) dx$$
.

- (b) $\oint e^x[(1-\cos y)dx (y-\sin y)dy]$, where OABO is a broken line through the points O(0;0), A(1;1), B(0;2).
- (c) $\oint (xy + e^x \sin x + x + y) dx (xy e^{-y} + x \sin y) dy$.
- (d) $\oint (xy^4 + x^2 + y\cos(xy))dx + \left(\frac{x^3}{3} + xy^2 x + x\cos(xy)\right)dy$, where C is a curve $x = a\cos t, y = a\sin t$,
- (e) $\oint_C (e^x + y^6) dx + (e^y + 3x) dy$, where C is a boundary of region enclosed by $x = 14 + \sqrt{|y|}$ and $x = y^2$, with oriented counterclockwise.

Exercise 92. Using the line integral of the second kind in order to compute the area of the region bounded by an arch of the cycloid: $x = a(t - \sin t), y = a(1 - \cos t)$ and x-axis, (a > 0)

Exercise 93. Evaluate the following line integral

(a)
$$\int_{(-2:-1)}^{(3;0)} (x^4 + 4xy^3) dx + (6x^2y^2 - 5y^4) dy.$$

(a)
$$\int_{(-2;-1)}^{(3;0)} (x^4 + 4xy^3) dx + (6x^2y^2 - 5y^4) dy.$$
 (b)
$$\int_{(1;\pi)}^{(2;2\pi)} (1 - \frac{y^2}{x^2} \cos \frac{y}{x}) dx + (\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}) dy.$$

Exercise 94. Evaluate the line integral

$$I = \int_{I} (3x^{2}y^{2} + \frac{2}{4x^{2} + 1})dx + (3x^{3}y + \frac{2}{y^{3} + 4})dy,$$

where L is curve $y = \sqrt{1 - x^4}$ from A(1; 0) to B(-1; 0).

Exercise 95. Find the constant α such that the following integral is an independent of path in the domain

$$\int_{AB} \frac{(1-y^2)dx + (1-x^2)dy}{(1+xy)^{\alpha}}.$$

Exercise 96. Find the curl and the divergence of the vector

(a)
$$\overrightarrow{F}(x, y, z) = xy\overrightarrow{i} + yz\overrightarrow{j} + zx\overrightarrow{k}$$
.

(b)
$$\overrightarrow{F}(x,y,z) = \frac{x}{x^2 + y^2 + z^2} \overrightarrow{i} + \frac{y}{x^2 + y^2 + z^2} \overrightarrow{j} + \frac{z}{x^2 + y^2 + z^2} \overrightarrow{k}$$
.

Exercise 97. Prove that

(a)
$$\operatorname{curl}(\overrightarrow{F} + \overrightarrow{G}) = \operatorname{curl}\overrightarrow{F} + \operatorname{curl}\overrightarrow{G}$$
.

(b)
$$\operatorname{curl}(f\overrightarrow{F}) = f \operatorname{curl} \overrightarrow{F} + (\nabla f) \times \overrightarrow{F}$$
.

Exercise 98. Determine whether or not \overrightarrow{F} is a conservative vector field. If it is, find a function f such that $\overrightarrow{F} = \nabla f$.

(a)
$$\overrightarrow{F}(x,y) = (2x - 3y)\overrightarrow{i} + (-3x + 4y - 8)\overrightarrow{j}$$
.

(b)
$$\overrightarrow{F}(x,y) = e^x \cos y \overrightarrow{i} + e^x \sin y \overrightarrow{j}$$
.

(c)
$$\overrightarrow{F}(x,y) = (xy \cos(xy) + \sin(xy))\overrightarrow{i} + (x^2 \cos(xy))\overrightarrow{j}$$
.

(d)
$$\overrightarrow{F}(x,y) = (\ln y + 2xy^3)\overrightarrow{i} + (3x^2y^2 + \frac{x}{y})\overrightarrow{j}$$
.

Exercise 99. Find f such that $\overrightarrow{F} = \nabla f$ and then compute $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$.

(a)
$$\overrightarrow{F}(x,y) = xy^2 \vec{i} + x^2 y \vec{j}$$
, where $C : \vec{r}(t) = (t + \sin \frac{\pi t}{2}, t + \cos \frac{\pi t}{2}), 0 \le t \le 1$.

(b)
$$\overrightarrow{F}(x,y) = \frac{y^2}{1+x^2} \vec{i} + 2y \arctan x \vec{j}$$
, where $C : \vec{r}(t) = t^2 i + 2t j, 0 \le t \le 1$.

(c)
$$\overrightarrow{F}(x,y) = (2xz + y^2)\overrightarrow{i} + 2xy\overrightarrow{j} + (x^2 + 3z^2)\overrightarrow{k}$$
, where $C: x = t^2, y = t+1, z = 2t-1, 0 \le t \le 1$.

(d)
$$\overrightarrow{F}(x,y) = e^{y}\overrightarrow{i} + xe^{y}\overrightarrow{j} + (z+1)e^{z}\overrightarrow{k}$$
, where $C: x = t, y = t^2, z = t^3, 0 \le t \le 1$.

Chapter 6. Surface Integrals

Exercise 100. Evaluate the surface integrals of scalar fields.

- (a) $\iint_E xy \, dS$, where F is the triangular region with vertices (1;0;0), (0;2;0), and (0;0;2).
- (b) $\iint_E yz \, dS$, where F is the part of the plane x + y + z = 1 that lies in the first octant.
- (c) $\iint_F yz \, dS$, where F is the surface with parametric equations $x=u^2, \, y=u\sin v, \, z=u\cos v, \, 0\leq u\leq 1, \, 0\leq v\leq \frac{\pi}{2}$.
- (d) $\iint_F z \, dS$, where F is the surface $x = y + 2z^2$, $0 \le y \le 1$, $0 \le z \le 1$.
- (e) $\iint_F y^2 dS$, where F is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane.
- (f) $\iint_F \frac{dS}{(2+x+y+z)^2}$, where F is the boundary of the triangular pyramid $x+y+z \le 1; x \ge 0; y \ge 0; z \ge 0$.

Exercise 101. Find the area of

- (a) the ellipse cut from the plane z = 2x + y by the cylinder $x^2 + y^2 = 1$.
- (b) the surface $x^2 2 \ln x + \sqrt{15}y z = 0$ above the square $D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2, 0 \le y \le 1\}$ in the xy-plane.
- (c) the part of the paraboloid $z = x^2 + y^2$ which lies under the plane z = 6.
- (d) the surface determined by the parametric equations $x = z(\cos u + u \sin u)$, $y = z(\sin u u \cos u)$, $0 \le u, z \le 1$.

Exercise 102. Find the mass of the surface F determined by the parametric equations $x = uv, y = u + v, z = u - v, u^2 + v^2 \le 1, u \ge 0, v \ge 0$ if the density $\rho(x, y, z) = x + yz$.

Exercise 103. Find the center of mass of

- (a) a thin hemisphere of radius R and constant mass density C.
- (b) the triangle with vertices (1;0;0), (0;1;0), (0;0;1) and the density $\rho(x,y,z)=x+2y+z$.
- (c) the cylinder $x^2 + y^2 = 1$, $0 \le z \le 1$ and the density $\rho(x, y, z) = x^2 + y^2 + z^2$.

Exercise 104. Evaluate the surface integral $\iint_A \overrightarrow{F} \cdot \overrightarrow{n} \, dS$ for the given vector field \overrightarrow{F} and the oriented surface A. For closed surfaces, use the positive (outward) orientation.

- (a) $\overrightarrow{F}(x,y,z) = xze^y \overrightarrow{i} xze^y \overrightarrow{j} + z \overrightarrow{k}$, A is the part of the plane x + y + z = 1 in the first octant and has downward orientation.
- (b) $\overrightarrow{F}(x,y,z) = x \vec{i} + y \vec{j} + z^4 \vec{k}$, A is the part of the cone $z = \sqrt{x^2 + y^2}$ beneath the plane z = 1 with downward orientation.
- (c) $\overrightarrow{F}(x,y,z) = xz \vec{i} + x \vec{j} + y \vec{k}$, A is the hemisphere $x^2 + y^2 + z^2 = 25$; $y \ge 0$, oriented in the direction of the positive y-axis.
- (d) $\overrightarrow{F}(x,y,z) = xy \overrightarrow{i} + 4x^2 \overrightarrow{j} + yz \overrightarrow{k}$, A is the surface $z = xe^y$, $0 \le x, y \le 1$, with upward orientation.
- (e) $\overrightarrow{F}(x,y,z) = x^2 \overrightarrow{i} + y^2 \overrightarrow{j} + z^2 \overrightarrow{k}$, A is the boundary of the solid half-cylinder $0 \le z \le \sqrt{1-y^2}$, $0 \le x \le 2$.
- (f) $\overrightarrow{F}(x,y,z) = (x,y,z)$ and A is the upper surface, upward oriented, $z = 16 x^2 y^2$, $x^2 + y^2 \le 16$.
- (g) $\overrightarrow{F}(x,y,z) = (\frac{x}{z}, \frac{y}{z}, z-2)$ and A is the upper surface, upward oriented, of $z = 4 x^2 y^2$, $x^2 + y^2 \le 2$.
- (h) $\overrightarrow{F}(x,y,z) = (0,y,-z)$ and A consists of the paraboloid $y = x^2 + z^2$, $0 \le y \le 1$ and the disk $x^2 + z^2 \le 1$, y = 1.

Exercise 105. Evaluate the surface integral $\iint_A \overrightarrow{F} \cdot \overrightarrow{n} \, dS$ for the given vector field \overrightarrow{F} and the oriented surface A.

(a) $\overrightarrow{F}(x,y,z) = (x,z,y)$ and A is the sphere $x^2 + y^2 + z^2 = 1$, oriented outward.

- (b) $\overrightarrow{F}(x,y,z) = (x,2y,3z)$ and A is the cube $[1;2] \times [1;2] \times [1;2]$, oriented outward.
- (c) $\overrightarrow{F}(x,y,z) = (x+2y,2y+3z,3z+x)$ and A the triangular pyramid ODBC, O(0;0;0), D(1;0;0), B(0;1;0), C(0;0;1), oriented outward.

Exercise 106. A fluid with density C flows with velocity $\vec{v} = (yx^2, x, z)$. Find the rate of flow upward through the paraboloid $A: z = 9 - \frac{x^2 + y^2}{4}, x^2 + y^2 \le 36$.

Exercise 107. Let \overrightarrow{F} be an inverse square field, that is $\overrightarrow{F}(\vec{r}) = C \frac{\vec{r}}{|\vec{r}|^3}$, for some constant C, where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. Show that the surface integral $\iint_A \overrightarrow{F} \cdot \vec{n} \, dS$, where A is a sphere with center at the origin, is independent of the radius of A.

Exercise 108. Use Stokes' Theorem to evaluate $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$. In each case C is oriented counterclockwise as viewed from above.

- (a) $\overrightarrow{F}(x,y,z) = yz \overrightarrow{i} + 2xz \overrightarrow{j} + 3^{xy} \overrightarrow{k}$ and C is the circle $x^2 + y^2 = 4$, z = 10.
- (b) $\overrightarrow{F}(x,y,z) = (3x+2y^2) \vec{i} + (8y + \frac{z^2}{3}) \vec{j} + (4z + \frac{3x^2}{2}) \vec{k}$ and C is the boundary of the triangle with vertices $(2;0;0),\ (0;3;0)$ and (0;0;6).
- (c) $\overrightarrow{F}(x,y,z) = xy \overrightarrow{i} + 2z \overrightarrow{j} + 3y \overrightarrow{k}$ and C is the curve of intersection of the plane x+z=5 and the cylinder $x^2 + y^2 = 9$.
- (d) $\overrightarrow{F}(x,y,z) = x^2z\overrightarrow{i} + xy^2\overrightarrow{j} + z^2\overrightarrow{k}$ and C is the curve of intersection of the plane x+y+z=1 and the cylinder $x^2+y^2=9$.

Exercise 109. The work done by the force field $\overrightarrow{F}(x,y,z) = (x^x + z^2, y^y + x^2, z^z + y^2)$ when a particle moves under its influence around the close edge of the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies in the first octant, in a counterclockwise direction as viewed from above.

Exercise 110. Use Stokes' Theorem to evaluate $\iint_A \operatorname{curl} \overrightarrow{F} \cdot \overrightarrow{n} \, dS$.

- (a) $\overrightarrow{F}(x,y,z) = 2y\cos z \vec{i} + e^x\sin z \vec{j} + xe^y \vec{k}$ and A is the hemisphere $x^2 + y^2 + z^2 = 9$, $z \ge 0$ oriented upward.
- (b) $\overrightarrow{F}(x,y,z) = x^2 z^2 \overrightarrow{i} + y^2 z^2 \overrightarrow{j} + xyz \overrightarrow{k}$ and A is the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 4$, oriented upward.
- (c) $\overrightarrow{F}(x,y,z) = (xyz,xy,x^2yz)$ and A consists of the top and the four sides but not the bottom of the cube $[0;1] \times [0;1] \times [0;1]$, oriented outward.
- (d) $\overrightarrow{F}(x,y,z) = (e^xyz, y^2z, 2z)$, A is the part of the hemisphere $x^2 + y^2 + z^2 = 9$, $x \ge 0$, that lies inside the cylinder $y^2 + z^2 = 4$, oriented in the direction of the positive x-axis.

Exercise 111. Use the Divergence Theorem to calculate $\iint_A \overrightarrow{F} \cdot \overrightarrow{n} dS$.

- (a) $\overrightarrow{F}(x,y,z) = x^3y \overrightarrow{i} x^2y^2 \overrightarrow{j} x^2yz \overrightarrow{k}$ and A is the surface of the solid bounded by the hyperboloid $x^2 + y^2 z^2 = 1$ and the planes z = -2 and z = 2.
- (b) $\overrightarrow{F}(x,y,z) = (\cos z + xy^2) \overrightarrow{i} + xe^{-z} \overrightarrow{j} + (\sin y + x^2 z) \overrightarrow{k}$ and A is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4.
- (c) $\overrightarrow{F}(x,y,z) = 4x^3z \vec{i} + 4y^3z \vec{j} + 3z^4 \vec{k}$ and A is the sphere with radius R and center the origin.
- (d) $\overrightarrow{F}(x,y,z) = z^2 x \vec{i} + (y^3 + \sin z) \vec{j} + (x^2 z + y^2) \vec{k}$ and A is the upward oriented top half of the sphere $x^2 + y^2 + z^2 = 1$.
- (e) $\overrightarrow{F}(x,y,z) = z^2 y^{10} \overrightarrow{i} + (4x^2y^3 + \sin z) \overrightarrow{j} + (2x^2z + y^2) \overrightarrow{k}$ and A is the outward oriented surface of the cube $[-1;1] \times [-1;1] \times [-1;1]$.
- (f) $\overrightarrow{F}(x,y,z) = -xy\overrightarrow{i} + 3y^2\overrightarrow{j} + 3zy\overrightarrow{k}$ and A is the outward oriented surface of the tetrahedron with vertices (0;0;0), (1;0;0), (0;1;0), and (0;0;1).
- (g) $\overrightarrow{F}(x,y,z) = 6xy^2 \overrightarrow{i} + 3x^2e^{2z} \overrightarrow{j} + 2z^3 \overrightarrow{k}$ and A is the outward oriented surface of the solid bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = -1, and z = 2.
- (h) $\overrightarrow{F}(x,y,z) = x^5 \overrightarrow{i} + \frac{10}{3} x^2 y^3 \overrightarrow{j} + 5z y^4 \overrightarrow{k}$ and A is the outward oriented surface of the solid bounded by the paraboloid $z = 1 x^2 y^2$ and the plane z = 0.